Варинга проблема - Definition. Was ist Варинга проблема
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Варинга проблема - definition

Слабая проблема Гольдбаха; Гольдбаха проблема; Гипотеза Гольдбаха; Теорема Виноградова — Гольдбаха; Проблема Эйлера; Бинарная проблема Гольдбаха; Гипотеза Варинга о простых числах; Тернарная проблема Гольдбаха
  • date=20190701213213 }}</ref>

Варинга проблема      

проблема теории чисел, сформулированная (без доказательства) английским математиком Э. Варингом в 1770; любое целое число Ni может быть представлено в виде суммы:

N=a1n+...+ank

некоторого числа k слагаемых, каждое из которых есть n-я степень целого положительного числа, причём число слагаемых k зависит только от n. Частным случаем В. п. является теорема Лагранжа о том, что каждое N есть сумма четырёх квадратов. Первое общее (для любого n) решение В. п. дано Д. Гильбертом (1909) с очень грубой оценкой количества слагаемых k в зависимости от п. Более точные оценки k получены в 20-х гг. 20 в. Г. Харди и Дж. Литлвудом, а в 1934 И. М. Виноградовым с помощью созданного им метода тригонометрических сумм были получены результаты, близкие к окончательным. Элементарное решение В. п. дано в 1942 Ю. В. Линником. Особое значение В. п. состоит в том, что при её исследовании были созданы мощные методы аналитической теории чисел.

Лит.: Хинчин А. Я., Три жемчужины теории чисел, 2 изд., М. - Л., 1948; Виноградов И. М., Избранные труды, М., 1952.

А. А. Карацуба.

Гольдбаха проблема         

одна из известных проблем теории чисел; заключается в доказательстве того, что всякое целое число, большее или равное шести, может быть представлено в виде суммы трёх простых чисел. Эту проблему выдвинул в 1742 Х. Гольдбах в письме к Л. Эйлеру. В ответ Эйлер заметил, что для решения проблемы достаточно доказать, что каждое чётное число есть сумма двух простых. В течение долгого времени не удавалось найти никаких путей исследования Г. п. В 1923 Г. Харди и Дж. Литлвуду удалось показать, что если верны некоторые теоремы (не доказанные и сейчас) относительно так называемых L-pядов Дирихле, то всякое достаточно большое нечётное число есть сумма трёх простых чисел. Крупным успехом на пути решения Г. п. была доказанная Л. Г. Шнирельманом (1930) теорема о том, что всякое целое число, большее единицы, есть сумма ограниченного числа простых чисел. В 1937 И. М. Виноградов доказал, что всякое достаточно большое нечётное число представляется суммой трёх простых чисел, то есть по существу решил Г. п. для нечётных чисел. Это - одно из крупнейших достижений современной математики. Созданный при решении Г. п. метод И. М. Виноградова позволяет решать и ряд существенно более общих задач. Другое доказательство теоремы о представлении достаточно большого нечётного числа в виде суммы трёх простых было дано в 1945 Ю. В. Линником. Задача о разбиении чётного числа на сумму двух простых ещё не решена.

Лит.: Виноградов И. М., Метод тригонометрических сумм в теории чисел, "Тр. Математического института АН СССР", 1947, т. 23; Чудаков Н. Г., О проблеме Гольдбаха, "Успехи математических наук", 1938, в. 4.

Проблема Гольдбаха         
Проблема Гольдбаха (гипотеза Гольдбаха, проблема Эйлера, бинарная проблема Гольдбаха) — утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел. Является открытой математической проблемой — по состоянию утверждение не доказано. В совокупности с гипотезой Римана включена в список проблем Гильберта под номером 8.

Wikipedia

Проблема Гольдбаха

Проблема Гольдбаха (гипотеза Гольдбаха, проблема Эйлера, бинарная проблема Гольдбаха) — утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел. Является открытой математической проблемой — по состоянию на 2023 год утверждение не доказано. В совокупности с гипотезой Римана включена в список проблем Гильберта под номером 8.

Более слабый вариант гипотезы — тернарная проблема Гольдбаха, согласно которой любое нечётное число, начиная с 7, можно представить в виде суммы трёх простых чисел, — в 2013 году доказана перуанским математиком Харальдом Гельфготтом. Из справедливости бинарной проблемы Гольдбаха очевидным образом следует тернарная: если каждое чётное число, начиная с 4, — сумма двух простых чисел, то, добавляя 3 к каждому чётному числу, можно получить все нечётные числа, начиная с 7.

Was ist В<font color="red">а</font>ринга пробл<font color="red">е</font>ма - Definition